Skip to main content
 首页>>数学

红外线(红外线体温计)

2026-02-05 浏览:36

今天给各位分享红外线的红外知识,其中也会对红外线体温计进行解释,线红如果能碰巧解决你现在面临的外线问题,别忘了关注本站,体温现在开始吧!红外

红外线是什么?

红外线是频率介于微波与可见光之间的电磁波,波长在760nm(纳米)~1mm(毫米)之间。外线它是体温频率比红光低的不可见光。英语中,红外前缀infra-意为意为“低于,线红在…下”。外线

高于绝对零度(0K,体温即-273.15℃)的红外物质都可以产生红外线。现代物理学称之为热射线。线红医用红外线可分为两类:近红外线与远红外线。外线含热能,太阳的热量主要通过红外线传到地球。

红外线的发现历史

公元1800年,英国科学家威廉·赫歇尔发现太阳光中的红光外侧所围绕著一种用肉眼无法看见的光源,波长介于1000μm ~ 5.6μm的“远红外线”,经过这种光源照射时,会对有机体产生放射、穿透、吸收、共振的效果。但是根据黑体辐射理论,一般的材料要产生足够强度的远红外线,并不容易,通常必须藉助特殊物质作能量的转换,将它所吸收的热量经由内部分子的振动再发放较低频率的远红外线出来。

红外线的作用?

红外线的作用较多,用途很广,以下通过几个例子进行说明:

(1)夜视

当可见光不足时,红外线用于夜视设备。夜视设备通过一个过程来运作,包括将环境光子光子转换为电子,然后通过化学和电子过程放大,然后转换回可见光。红外光源可用于增强夜视设备转换的可用环境光,增加黑暗中的可见度,而无需使用可见光源。红外光和夜视设备的使用不应与热成像混淆,热成像通过检测从物体和周围环境发出的红外辐射(热量),根据表面温度的差异生成图像。

(2)热成像

红外辐射可用于远程确定物体的温度(如果发射率已知)。这被称为温度记录法,或者在NIR中非常热的物体或可见的情况下称为高温测定法。热成像(热成像)主要用于军事和工业应用,但由于大量降低生产成本,该技术以汽车红外相机的形式进入公众市场。热像仪可检测电磁波谱(大约900-14,000纳米或0.9-14微米)的红外范围内的辐射并生成该辐射的图像。由于红外辐射是由所有物体根据其温度发射的,根据黑体辐射定律,热像仪可以在有或没有可见光照的情况下“观察”人的环境。物体发射的辐射量随着温度的升高而增加,因此热成像可以让人看到温度的变化(因此名称)。

(3)加热

红外辐射可以用作故意的加热源。例如,它被用在红外线桑拿房中以加热居住者。它也可以用于其他加热应用,例如去除飞机机翼上的冰(除冰)。红外线可以用于烹饪和加热食物,因为它主要加热不透明的吸收性物体,而不是它们周围的空气。红外加热在工业制造过程中也变得越来越流行,例如涂层固化,塑料成形,退火,塑料焊接和印刷干燥。在这些应用中,红外加热器取代对流烤箱和接触加热。通过将红外加热器的波长与材料的吸收特性相匹配来实现效率。

(4)通信

红外数据传输也用于计算机外围设备和个人数字助理之间的短距离通信。这些设备通常符合红外数据协会IrDA公布的标准。遥控器和IrDA设备使用红外发光二极管(LED)发射红外辐射,通过塑料透镜聚焦成窄光束。光束被调制,即开启和关闭,以防止来自其他红外线源(如日光或人造光线)的干扰。接收器使用硅 光电二极管将红外辐射转换为电流。它仅响应由发射器产生的快速脉冲信号,并缓慢地从环境光中滤除变化的红外辐射。红外通讯适用于人口密度高的地区的室内使用。红外线不会穿透墙壁,因此不会与相邻房间中的其他设备发生干扰。红外线是遥控器控制电器的最常见方式。红外遥控协议(如RC-5,SIRC)用于与红外通信。使用红外激光器进行自由空间光通信可能是一种相对便宜的方式,在工作速度高达4千兆比特/秒的城市地区安装通信链路,相比埋入光缆的成本,辐射损伤除外。“由于眼睛无法检测红外,因此可能不会发生眨眼或闭眼以帮助预防或减少损伤。”红外激光器被用来为光纤通信系统提供光。波长大约为1,330纳米(最小色散)或1,550纳米(最佳透射率)的红外光是标准二氧化硅光纤的最佳选择。通过RIAS(远程红外声频标识)项目正在研究印刷标志的编码音频版本的红外数据传输,以帮助视障人士。将IR数据从一个设备传输到另一个设备有时被称为发光。

(5)天文学

天文学家使用光学元件(包括反射镜,透镜和固态数字探测器)观察电磁波谱中红外部分的物体。出于这个原因,它被归类为光学天文学的一部分。为了形成图像,红外望远镜的组件需要小心屏蔽热源,探测器使用液氦冷冻。

地基红外望远镜的灵敏度受到大气中水汽的显着限制,它吸收了从选定大气窗口外部空间到达的部分红外辐射。通过将望远镜天文台放置在高海拔处,或者在望远镜的高空携带气球或飞机,可以部分缓解这种局限性。太空望远镜不会受到这种障碍的困扰,因此外太空被认为是红外天文学的理想地点。

该光谱的红外部分对天文学家有几个有用的好处。我们银河系中的气体和尘埃的冷,黑暗的分子云将在辐射热量照射下被嵌入恒星照射。在开始发射可见光之前,红外也可用于检测原生星。红外光谱中的恒星会释放出一小部分能量,因此可以更容易地检测附近的诸如行星等很酷的物体。(在可见光谱中,来自恒星的眩光将淹没来自行星的反射光。)

红外光对于观察活动星系的核心也很有用,它们通常在气体和灰尘中隐身。具有高红移的遥远星系将使其光谱的峰值部分向较长波长偏移,因此它们在红外线中更容易观察到。

扩展阅读:

红外辐射(IR)是具有比可见光更长的波长的电磁辐射(EMR),并且因此对于人眼通常是不可见的(尽管来自特定脉冲激光器的波长高达1050nm的IR可以在特定条件下被人看到)。它有时被称为红外光。IR波长从700 纳米(频率 430  THz)的可见光谱的标称红色边缘延伸到1  毫米(300  GHz)室温附近物体发出的大部分热辐射都是红外线。像所有的EMR,IR携带辐射能,并且表现都像波浪和类似其量子粒子,所述光子。

红外线是由天文学家爵士在1800发现了威廉·赫歇尔,谁通过其对温度计效应来发现一个类型的光谱能量比红光低,无形的辐射。太阳总能量的一半以上最终被发现以红外线的形式到达地球。吸收和发射的红外辐射之间的平衡对地球气候有重要影响。

红外辐射在改变其旋转振动运动时被分子发射或吸收。它通过偶极矩的变化激发分子中的振动模式,使其成为研究适当对称分子这些能态的有用频率范围。红外光谱检查红外范围内光子的吸收和透射。

红外辐射用于工业,科学,军事,执法和医疗应用。使用主动近红外照明的夜视设备可以在没有检测到观察者的情况下观察人或动物。红外天文学使用配有传感器的望远镜穿透分子云等空间中的灰尘区域,检测诸如行星等物体,并查看宇宙早期高度红移的物体。[8]红外热成像相机被用来检测热损失在绝缘系统中,来观察改变皮肤血流量,并检测电气设备的过热。

军事和民用应用的广泛用途包括目标获取,监视,夜视,归位和跟踪。正常人体温度下的人体主要辐射10微米(微米)左右的波长。非军事用途包括热效率分析,环境监测,工业设施检查,生长检测,远程温度传感,短距离无线通信,光谱学和天气预报。

红外线是什么

红外线(Infrared)是波长介于微波与可见光之间的电磁波,波长在1mm到760纳米(nm)之间,比红光长的非可见光。

红外线的波长大致界定在0.75至1,000微米,这当中又可区分为三个波长段:0.75至1.5微米的近红外线,1.5至3.0微米的中红外线及3.0至1,000微米的远红外线。

我们人体也是个放射体,放射的波长也是远红外线;气功治病也是来自于远红外线。人类自古以来,虽不了解远红外线的存在,但是在生活中却懂得使用远红外线。

例如利用沙浴、温泉浴来疗养,用的原理就是远红外线。栗子用沙来炒更香甜可口;地瓜用土块、石块来闷,外皮未焦内部已熟;这道理也是来自远红外线。用砂锅炖煮,食物更好吃,也是因为远红外线。

扩展资料

远红外线的特性

1、能被人体吸收,引起温热效应。

2、具有渗透力。

3、能引起体内物质的共振,以使人体细胞活化。

4、无副作用。所以远红外线用之于对人体的医疗与健康的维护上,深具有开发的价值。

构成们人体所有物质的分子,其共鸣及吸收波长领域,几乎都在4~14微米中,所以具备4~14微米波长的远红外线放射体,虽然不需到达高热,对人体也会产生很好的效果。

远红外线放射体产生的磁波具有其他波长所没有的共鸣吸收、渗透力、温热效应,是促使人体健康最关键的作用。

远红外线

经探测自然界中之花岗岩发射之波长与生育光线十分类近。以此研发出人工生化陶瓷,以做为4~14微米的光线之放射源。

要检测远红外线是否为4~14微米的波长,在台湾只有3处有仪器可检测:工研院、中山科学研究院与海洋大学。其方法是将远红外线放射体加热至约60℃,在此温度下测定其光谱,一般以各波长之放射率表示。

参考资料来源:百度百科-红外线

什么手机有红外线功能

支持红外传感器的华为手机:HUAWEI Mate Xs 2 、HUAWEI Mate 40E Pro、HUAWEI P50 Pro、HUAWEI Mate 40E、HUAWEI Mate X2、HUAWEI Mate 40 RS 保时捷设计 、HUAWEI Mate30E Pro 5G HUAWEI Mate 40 Pro等。

红外线有什么作用呢?

强度大,温度高

红外线是一种电磁波,位于可见光红光外端,在绝对零度(-273.15℃) 以上的物体都辐射红外能量,是红外测温技术的基础。

红外辐射的辐射度、辐射出射度、辐射强度、辐射功率等均是物理中有关红外辐射的相关计算量。

一般物体的热辐射

一般物体对辐射的吸收比总是小于1,因而发射热辐射的能力也小于黑体。对于它的辐射度,一般不直接测量,而是与同温度的黑体辐射进行比较,用一个比值表示其辐射特性。

首先,比较热辐射物体与同温度黑体在各个方向上的辐射度。前者的辐射度L可写成 L=ε,ψ)Lbb (16)

式中ε称为发射率,ε1。对于大部分具有实用价值的热辐射物体,ε与方向,ψ)无关。因而达类物体也具有朗伯型表面,M=πL关系同样适用。

其次,比较热辐射物体与黑体在各个温度及各波长的法向辐射度。利用上述关系就可得到物体的辐射出射度M

M=ε(T,λ)Mbb(T,λ) (17)

式中ε与波长和热辐射体的温度有关。但是,对于一些具有实用价值的热辐射物体,ε随λ的变化比较缓慢。在所需要的光谱范围内,可以把ε看作常数,或者取适当的平均值。这样,按普朗克公式对波长积分所得的斯忒藩定律可写成

M=ε(T)σT4 (18)

因而,对任一热辐射物体,都可以用一个比ε来描述它的热辐射性能。一般说来,ε是方向、温度和波长的复杂函数。但是,一些常用的热辐射体,大都具有朗伯型表面,ε随λ的变化缓慢,用一个对波长作适当平均的ε(T)就足以描述它的全部热辐射特性。

在前面讨论空腔热平衡时,曾得到式(12),将其与式(18)相比,即得

ε=α  (19)

即任何物体的吸收比与发射率在任何温度和任何波长时都相等。黑体是其中的一个特例,ε=α=1。

当α1时,投射到物体表面的辐射,一部分被反射,其余部分进入体内被吸收。但是,也有可能仅有一部分被吸收,而其余部分透过物体辐射出去。如果反射比(反射出去的辐射功率与入射辐射功率之比)为 ρ,透射比(透过物体的辐射功率与入射辐射功率之比)为τ,则按能量守恒定律,应有

α+ρ+τ=1 (20)

对于不透明物体τ=0,则得

α+ρ=1

因而有

ε=1-ρ (21)

在实践中,常用测量ρ的办法来求ε。

什么叫红外线?

一、什么是红外线?

红外线是太阳光线中众多不可见光线中的一种,又称为红外热辐射。红外线的波长大于可见光线,波长为0.75-1000μm。红外线可分为三部分,即近红外线,波长为0.75-1.50μm之间;中红外线,波长为1.50-6.0μm之间;远红外线,波长为6.0-l000μm 之间。

二、红外线生物学效应的机理可分为:一次效应(增温效应)和二次效应(继发效应)。

一次效应也叫增温效应,指红外线对人体皮肤、皮下组织具有强烈的穿透力。红外线所产生的增温效应可以使皮肤和皮下组织的温度相应增高,促进血液的循环和新陈代谢,促进人的健康。一次效应对组织产生的热作用、消炎作用及促进再生作用已为临床所肯定,通常治疗均采用对病变部位直接照射。

二次效应是指产生一次效应的同时,物体也随之发生其他的化学、物理等改变,这称为物体吸收远红外线辐射后产生的二次效应,也称为继发效应。但目前红外线对人体产生二次效应的机理目前尚未完全清楚。

三、红外线在临床上使用时,可被体表浅表组织吸收, 有显著干燥脱水作用, 使局部组织血液循环加快, 起到消炎镇痛作用。远红外线局部辐射具有类似于血管扩张剂的生物学作用 。有学者报道称使用直线偏振光红外线治疗多种类型的斑秃有明显疗效。红外线还具有抗风湿作用;降低心脑血管疾病患者的血液粘度、防止血栓形成,改善微循环,减轻胸闷、心悸、头昏、麻木等症状;使血管平滑肌松弛, 血管扩张, 血循环加强, 促使渗出液吸收, 利于炎肿消退, 减轻肌肉的紧张和痉挛 ;妇科炎症;治疗小儿肠痉挛等。

红外线的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于红外线体温计、红外线的信息别忘了在本站进行查找喔。